CHEMiFORGE

Development of a New Water Electrolysis Method without Membrane, SCE (SuperCapacitive Electrolyzer)

membeulein-i pil-yoeobsneun saeloun sujeonhae bangsig gaebal, SCE (SuperCapacitive Electrolyzer) seuweden-ui yeongujadeul-eun choegeun membeulein-i eobsneun sujeonhaeleul wihan jeonhaejo-e daehan yeonguleul balpyohago hwaseog yeonlyoleul daechehal su issneun jisog ganeunghan suso saengsan-e daehan hyeogsinjeog-in yeongu gyeolgwaleul balpyohaessseubnida. i hyeogsinjeog-in syupeokeopaesitibeu jeonhaejo(SuperCapacitive Electrolyzer, SCE)neun membeulein-i pil-yo eobs-i unjeon-i ganeunghamyeo jigue pungbuhan jaelyoleul sayonghayeo geulin suso saengsan-ui hwagjangseong-gwa biyong jeolgam-e daehan jung-yohan munjeleul haegyeolhabnida. SCEui hoeggijeog-in baljeon-ui haegsim-eun susowa sanso saengsan-eul gong-ganjeog, siganjeog-eulo bunlihayeo jeontongjeog-in sujeonhae bangsig-eul ttwieoneom-eo anjeonseong-gwa hyoyulseong-eul hyangsangsikyeossseubnida. ijung gineungseong chogmaewa sel choejeoghwaleul tonghae yeongujin-eun silje jeonlyu mildo-eseo 69%laneun insangjeog-in eneoji hyoyul-eul dalseonghaessseubnida. * U.S. Department of Energy(DoE), PEM Water Electrolysis efficiency target: 69% (LHV)​SCEneun du gaeui dong-ilhan sello jagdonghayeo jisogjeog-in suso saengsan-eul ganeunghabnida. i siseutem-eul tonghae byeoldoui chaembeoeseo suso balsaeng ban-eung(HER)gwa sanso balsaeng ban-eung(OER)eul wihan ijung gineung jeongeug-eul hwal-yonghayeo susowa sansoui saengsan-eul byeoldoui dangyelo bunlihal su iss-eumyeo ileohan bunlineun syupeo keopaesiteo jeojang mekeonijeum-eul mobanghan bojo jeongeug-ui chungjeon mich bangjeon-eul tonghae chogjindoeneun membeulein-ui pil-yoseong-eul jegeohaessseubnida. geuligo SCR sujeonhae siseutem-eul chuga geomjeung-eul hagi wihae HERwa OER modue daehan hwalseong-i nop-eun jeongi chogmaega pil-yohabnida. jeongi chogmaeleul wihae yeongudoen dayanghan chogmae jung-eseo jeon-igeumsog giban inhwamul, teughi inhwakobalteucheol(CoFeP)eun nop-eun hwalseong-gwa anjeongseong-eul jalanghabnida. suso balsaeng ban-eung(HER)gwa sanso balsaeng ban-eung(OER)eul modu gasoghwahal su issneun ijung gineung chogmaeneun sujeonhae siseutem-ui hyoyulseong-e maeu jung-yohabnida. CoFePneun Ni Foam-e jeongjeonlyu jeonchag bangbeob-eul tonghae habseongdoen alkalli jogeon-eseo nop-eun hwalseong-gwa anjeongseong-eulo inhae dudeuleojibnida. i gongjeong-eul tonghae gyun-ilhago jomilhan CoFeP cheung-i saengseongdoemyeo ineun chogmae gongjeong-e doum-i doebnida. alkalliseong maejil-eseo seonhyeong seuwib jeon-abjeonlyubeob(Linear Sweep Voltammetry, LSV)eul tonghae pyeong-gadoen CoFePui jeongihwahagjeog seongneung-eun dan-il geumsog inhwamul-e bihae suso balsaeng ban-eung-gwa sanso balsaeng ban-eung modue daehae usuhan hwalseong-eul boyeojubnida. i seongneung-eun Fe wonja-e uihan Co hwalseong saiteu jubyeon-ui jeonja gujo byeonjo-e giinhabnida. geuligo sing-geul sel(Single Cell) pyeong-galeul tonghae SCE siseutem-eun choedae 99%ui paeleodei hyoyul-eul dalseonghayeo hyoyuljeog-in ban-eung jeonhwan-eul ibjeunghaessseubnida. ijung gineungseong chogmae(CoFeP)leul sayonghan silheom-eseo jeonche sujeonhaee daehae eod-eun eneoji sobineun munheon-e bogodoen gwigeumsog giban chogmae mich jeon-i geumsog giban chogmaewa biseushan sel jeon-ab mich hyoyul gabs-eul boyeojubnida. ibeon yeonguleul tong pungbuhago biyong-i naj-eun jaelyoleul hwal-yonghayeo membeulein-i eobsneun sujeonhae siseutem-ui ganeungseong-eul boassseubnida. geuligo sanseong mich alkalliseong jogeon modueseo ganeunghan unjeon-eun dayanghan eung-yong bun-ya-e daehan jeog-eungseong-gwa jamjaelyeog-i iss-eum-eul hwag-inhaessseubnida. SCEui gaebal-eun jisog ganeunghago hyoyuljeog-in suso saengsan-eul hyanghan tamgueseo jung-yohan jinjeon-eul uimihabnida. yeonguwondeul-eun SCEui sang-eobjeog-in seong-gong ganeungseong-eul hyangsangsikineun geos-eul mogpyolo haneun yeonguleul chujinhal yejeong-imyeo gaeseon-e pil-yohan jamjaejeog bubun, jeongeug-ui yonglyangseong jeojang yonglyang-eul neulligo jeongeug jeondodoleul choejeoghwahayeo jeohang-eul jul-ineun geos-e nolyeoghal geos-ibnida. ileul tonghae eneoji hyoyulseong-eul deoug hyangsangsikigo un-yeong biyong-eul jul-il su geos-eulo yesanghabnida.
자세히
1,812 / 5,000
번역 결과
번역 결과
Development of a new water electrolysis method that does not require a membrane, SCE (SuperCapacitive Electrolyzer)
[Dall-E]

Introduction: water electrolysis method without membrane

Researchers in Sweden recently published research on electrolyzer for membrane-free water electrolysis and presented groundbreaking findings on sustainable hydrogen production that can replace fossil fuels. This innovative SuperCapacitive Electrolyzer (SCE) enables membrane-free operation and addresses the critical challenges of scalability and cost reduction of green hydrogen production using earth-abundant materials.

The key to SCE’s breakthrough is the spatial and temporal separation of hydrogen and oxygen production, improving safety and efficiency over traditional water electrolysis methods. Using a dual-functional catalyst and cell optimization, the researchers achieved an impressive energy efficiency of 69% at real current densities.

*U.S. Department of Energy (DoE), PEM Water Electrolysis efficiency target: 69% (LHV)

SCE operates as two identical cells, enabling continuous hydrogen production. This system allows the production of hydrogen and oxygen to be separated into separate steps utilizing dual-function electrodes for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in separate chambers, and this separation is achieved through a supercapacitor storage mechanism. Eliminates the need for membranes facilitated by charging and discharging of auxiliary electrodes, mimicking .

And to further validate the SCR water electrolysis system, an electrocatalyst with high activity for both HER and OER is needed. Among the various catalysts studied for electrocatalysis, transition metal-based phosphides, especially cobalt iron phosphide (CoFeP), boast high activity and stability. Dual-functional catalysts that can accelerate both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are critical to the efficiency of water electrolysis systems.

CoFeP stands out due to its high activity and stability in alkaline conditions, synthesized via galvanostatic electrodeposition method on Ni foam. This process creates a uniform, dense layer of CoFeP, which aids in the catalytic process. The electrochemical performance of CoFeP evaluated through linear sweep voltammetry (LSV) in alkaline media shows superior activity for both hydrogen evolution and oxygen evolution reactions compared to single metal phosphides. This performance is attributed to the modulation of the electronic structure around the Co active site by Fe atoms.

membeulein-i pil-yoeobsneun saeloun sujeonhae bangsig gaebal, SCE (SuperCapacitive Electrolyzer) seuweden-ui yeongujadeul-eun choegeun membeulein-i eobsneun sujeonhaeleul wihan jeonhaejo-e daehan yeonguleul balpyohago hwaseog yeonlyoleul daechehal su issneun jisog ganeunghan suso saengsan-e daehan hyeogsinjeog-in yeongu gyeolgwaleul balpyohaessseubnida. i hyeogsinjeog-in syupeokeopaesitibeu jeonhaejo(SuperCapacitive Electrolyzer, SCE)neun membeulein-i pil-yo eobs-i unjeon-i ganeunghamyeo jigue pungbuhan jaelyoleul sayonghayeo geulin suso saengsan-ui hwagjangseong-gwa biyong jeolgam-e daehan jung-yohan munjeleul haegyeolhabnida. SCEui hoeggijeog-in baljeon-ui haegsim-eun susowa sanso saengsan-eul gong-ganjeog, siganjeog-eulo bunlihayeo jeontongjeog-in sujeonhae bangsig-eul ttwieoneom-eo anjeonseong-gwa hyoyulseong-eul hyangsangsikyeossseubnida. ijung gineungseong chogmaewa sel choejeoghwaleul tonghae yeongujin-eun silje jeonlyu mildo-eseo 69%laneun insangjeog-in eneoji hyoyul-eul dalseonghaessseubnida. * U.S. Department of Energy(DoE), PEM Water Electrolysis efficiency target: 69% (LHV)​SCEneun du gaeui dong-ilhan sello jagdonghayeo jisogjeog-in suso saengsan-eul ganeunghabnida. i siseutem-eul tonghae byeoldoui chaembeoeseo suso balsaeng ban-eung(HER)gwa sanso balsaeng ban-eung(OER)eul wihan ijung gineung jeongeug-eul hwal-yonghayeo susowa sansoui saengsan-eul byeoldoui dangyelo bunlihal su iss-eumyeo ileohan bunlineun syupeo keopaesiteo jeojang mekeonijeum-eul mobanghan bojo jeongeug-ui chungjeon mich bangjeon-eul tonghae chogjindoeneun membeulein-ui pil-yoseong-eul jegeohaessseubnida. geuligo SCR sujeonhae siseutem-eul chuga geomjeung-eul hagi wihae HERwa OER modue daehan hwalseong-i nop-eun jeongi chogmaega pil-yohabnida. jeongi chogmaeleul wihae yeongudoen dayanghan chogmae jung-eseo jeon-igeumsog giban inhwamul, teughi inhwakobalteucheol(CoFeP)eun nop-eun hwalseong-gwa anjeongseong-eul jalanghabnida. suso balsaeng ban-eung(HER)gwa sanso balsaeng ban-eung(OER)eul modu gasoghwahal su issneun ijung gineung chogmaeneun sujeonhae siseutem-ui hyoyulseong-e maeu jung-yohabnida. CoFePneun Ni Foam-e jeongjeonlyu jeonchag bangbeob-eul tonghae habseongdoen alkalli jogeon-eseo nop-eun hwalseong-gwa anjeongseong-eulo inhae dudeuleojibnida. i gongjeong-eul tonghae gyun-ilhago jomilhan CoFeP cheung-i saengseongdoemyeo ineun chogmae gongjeong-e doum-i doebnida. alkalliseong maejil-eseo seonhyeong seuwib jeon-abjeonlyubeob(Linear Sweep Voltammetry, LSV)eul tonghae pyeong-gadoen CoFePui jeongihwahagjeog seongneung-eun dan-il geumsog inhwamul-e bihae suso balsaeng ban-eung-gwa sanso balsaeng ban-eung modue daehae usuhan hwalseong-eul boyeojubnida. i seongneung-eun Fe wonja-e uihan Co hwalseong saiteu jubyeon-ui jeonja gujo byeonjo-e giinhabnida. geuligo sing-geul sel(Single Cell) pyeong-galeul tonghae SCE siseutem-eun choedae 99%ui paeleodei hyoyul-eul dalseonghayeo hyoyuljeog-in ban-eung jeonhwan-eul ibjeunghaessseubnida. ijung gineungseong chogmae(CoFeP)leul sayonghan silheom-eseo jeonche sujeonhaee daehae eod-eun eneoji sobineun munheon-e bogodoen gwigeumsog giban chogmae mich jeon-i geumsog giban chogmaewa biseushan sel jeon-ab mich hyoyul gabs-eul boyeojubnida. ibeon yeonguleul tong pungbuhago biyong-i naj-eun jaelyoleul hwal-yonghayeo membeulein-i eobsneun sujeonhae siseutem-ui ganeungseong-eul boassseubnida. geuligo sanseong mich alkalliseong jogeon modueseo ganeunghan unjeon-eun dayanghan eung-yong bun-ya-e daehan jeog-eungseong-gwa jamjaelyeog-i iss-eum-eul hwag-inhaessseubnida. SCEui gaebal-eun jisog ganeunghago hyoyuljeog-in suso saengsan-eul hyanghan tamgueseo jung-yohan jinjeon-eul uimihabnida. yeonguwondeul-eun SCEui sang-eobjeog-in seong-gong ganeungseong-eul hyangsangsikineun geos-eul mogpyolo haneun yeonguleul chujinhal yejeong-imyeo gaeseon-e pil-yohan jamjaejeog bubun, jeongeug-ui yonglyangseong jeojang yonglyang-eul neulligo jeongeug jeondodoleul choejeoghwahayeo jeohang-eul jul-ineun geos-e nolyeoghal geos-ibnida. ileul tonghae eneoji hyoyulseong-eul deoug hyangsangsikigo un-yeong biyong-eul jul-il su geos-eulo yesanghabnida.
자세히
1,812 / 5,000
번역 결과
번역 결과
Development of a new water electrolysis method that does not require a membrane, SCE (SuperCapacitive Electrolyzer)

And through single cell evaluation, the SCE system achieved Faraday efficiencies of up to 99%, demonstrating efficient reaction conversion. The energy consumption obtained for full water electrolysis in experiments using a bifunctional catalyst (CoFeP) shows similar cell voltage and efficiency values to noble and transition metal-based catalysts reported in the literature.

This study demonstrated the potential of a membrane-free water electrolysis system utilizing abundant and low-cost materials. And its possible operation in both acidic and alkaline conditions confirms its adaptability and potential for a variety of applications.

Researchers are tirelessly working to enhance the commercial viability of SCE, exploring avenues to optimize its performance and efficiency. One key area of focus is increasing the capacitive storage capacity of the electrodes, which plays a crucial role in maximizing the energy density and overall output of the system. Additionally, efforts are underway to optimize electrode conductivity, aiming to reduce resistance and minimize energy losses during the hydrogen production process.

By addressing these key areas, researchers aim to further improve the energy efficiency of SCE, making it an increasingly attractive and cost-effective solution for green hydrogen production. Reduced operating costs and enhanced sustainability will not only benefit the energy sector but also contribute to the broader goal of transitioning towards a hydrogen-based economy.

Conclusion

The development of SCE represents a significant step forward in the quest towards sustainable and efficient hydrogen production. SCE’s development for green hydrogen production is one of the ways to combat carbon neutrality and climate change and accelerate the realization of a hydrogen society. Researchers will pursue research aimed at improving the commercial viability of SCE and will work on potential areas for improvement increasing the capacitive storage capacity of the electrodes and optimizing electrode conductivity to reduce resistance.

This is expected to further improve energy efficiency and reduce operating costs. The development of SCE represents a significant step forward in the quest towards sustainable and efficient hydrogen production. SCE’s development for green hydrogen production is one of the ways to combat carbon neutrality and climate change and accelerate the realization of a hydrogen society. Researchers will pursue research aimed at improving the commercial viability of SCE and will work on potential areas for improvement increasing the capacitive storage capacity of the electrodes and optimizing electrode conductivity to reduce resistance.

This is expected to further improve energy efficiency and reduce operating costs. The development of SCE represents a significant step forward in the quest towards sustainable and efficient hydrogen production. SCE’s development for green hydrogen production is one of the ways to combat carbon neutrality and climate change and accelerate the realization of a hydrogen society.

Researchers will pursue research aimed at improving the commercial viability of SCE and will work on potential areas for improvement increasing the capacitive storage capacity of the electrodes and optimizing electrode conductivity to reduce resistance. This is expected to further improve energy efficiency and reduce operating costs.

Source: Toledo-Carrillo, Esteban A., et al. “Decoupled supercapacitive electrolyzer for membrane-free water splitting.” Science Advances 10.10 (2024): eadi3180.

https://www.science.org/doi/10.1126/sciadv.adi3180

※ This report has been compiled for the purpose of providing general information. It is based on data gathered by CHEMiFORGE. Should you have any inquiries or need to make decisions based on this report, it is advisable to consult with a CHEMiFORGE.